A Simple Homotopy Proximal Mapping for Compressive Sensing

نویسندگان

  • Tianbao Yang
  • Lijun Zhang
  • Rong Jin
  • Shenghuo Zhu
چکیده

In this paper, we present a novel yet simple homotopy proximal mapping algorithm for compressive sensing. The algorithm adopts a simple proximal mapping of the l1 norm at each iteration and gradually reduces the regularization parameter for the l1 norm. We prove a global linear convergence of the proposed homotopy proximal mapping (HPM) algorithm for solving compressive sensing under three different settings (i) sparse signal recovery under noiseless measurements, (ii) sparse signal recovery under noisy measurements, and (iii) nearly-sparse signal recovery under subgaussian noisy measurements. In particular, we show that when the measurement matrix satisfies Restricted Isometric Properties (RIP), our theoretical results in settings (i) and (ii) almost recover the best condition on the RIP constants for compressive sensing. In addition, in setting (iii), our results for sparse signal recovery are better than the previous results, and furthermore our analysis explicitly exhibits that more observations lead to not only more accurate recovery but also faster convergence. Compared with previous studies on linear convergence for sparse signal recovery, our algorithm is simple and efficient, and our results are better and provide more insights. Finally our empirical studies provide further support for the proposed homotopy proximal mapping algorithm and verify the theoretical results.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Simple Homotopy Proximal Mapping Algorithm for Compressive Sensing

In this paper, we present a novel yet simple homotopy proximal mapping algorithm for compressive sensing. The algorithm adopts a simple proximal mapping for l1 norm regularization at each iteration and gradually reduces the regularization parameter of the l1 norm. We prove a global linear convergence for the proposed homotopy proximal mapping (HPM) algorithm for solving compressive sensing unde...

متن کامل

A Simple Homotopy Algorithm for Compressive Sensing

In this paper, we consider the problem of recovering the s largest elements of an arbitrary vector from noisy measurements. Inspired by previous work, we develop an homotopy algorithm which solves the l1-regularized least square problem for a sequence of decreasing values of the regularization parameter. Compared to the previous method, our algorithm is more efficient in the sense it only updat...

متن کامل

Mapping Spatial Variability of Soil Salinity Using Remote Sensing Data and Geostatistical Analysis: A Case of Shadegan, Khuzestan

Extended abstract 1- Introduction Soil salinity is one of the most important desertification parameters in many parts of the world. Thus, preparing soil salinity maps in macro scales is necessary. Water and soil salinity as one of the contributing parameters in desertification, cause soil and vegetation degradation. Soil salinization represents many negative effects on the earth systems such ...

متن کامل

A New Analysis of Compressive Sensing by Stochastic Proximal Gradient Descent

In this manuscript, we analyze the sparse signal recovery (compressive sensing) problem from the perspective of convex optimization by stochastic proximal gradient descent. This view allows us to significantly simplify the recovery analysis of compressive sensing. More importantly, it leads to an efficient optimization algorithm for solving the regularized optimization problem related to the sp...

متن کامل

A Proximal-Gradient Homotopy Method for the L1-Regularized Least-Squares Problem

We consider the `1-regularized least-squares problem for sparse recovery and compressed sensing. Since the objective function is not strongly convex, standard proximal gradient methods only achieve sublinear convergence. We propose a homotopy continuation strategy, which employs a proximal gradient method to solve the problem with a sequence of decreasing regularization parameters. It is shown ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1412.1205  شماره 

صفحات  -

تاریخ انتشار 2014